满分5 > 高中数学试题 >

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1...

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令manfen5.com 满分网
(1)求g(x)的表达式;
(2)若∃x>0使f(x)≤0成立,求实数m的取值范围;
(3)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对∀x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.
(1)设g(x)=ax2+bx+c,根据g(x-1)+g(1-x)=x2-2x-1直接可得答案. (2)表示出函数f(x)的解析式,对m进行大于0、小于、和等于0进行分析可得答案. (3)先根据H(x)的导数小于等于0判断出H(x)单调递减的,只要证明|H(m)-H(1)|<1即可. 【解析】 (1)设g(x)=ax2+bx+c,于是g(x-1)+g(1-x)=2a(x-1)2+2c=(x-1)2-2,所以 又g(1)=-1,则.所以. (2). 当m>0时,由对数函数性质,f(x)的值域为R; 当m=0时,对∀x>0,f(x)>0恒成立; 当m<0时,由, 列表: .. 所以若∀x>0,f(x)>0恒成立,则实数m的取值范围是(-e,0]. 故∃x>0使f(x)≤0成立,实数m的取值范围(-∞,-e]∪(0,+∞). (3)因为对∀x∈[1,m],,所以H(x)在[1,m]内单调递减. 于是.. 记, 则, 所以函数在(1,e]是单调增函数, 所以,故命题成立.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足bn=anan+1(n∈N*
(Ⅰ)若{an}是等差数列,且b3=12,求数列{an}的通项公式.
(Ⅱ)若{an}是等比数列,求数列{bn}的前n项和Sn
(Ⅲ)若{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.
查看答案
manfen5.com 满分网某企业有两个生产车间分别在A、B两个位置,A车间有100名员工,B车间有400名员工,现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐,已知A、B、C中任意两点间的距离均是1km,设∠BDC=α,所有员工从车间到食堂步行的总路程为S.
(1)写出S关于α的函数表达式,并指出α的取值范围;
(2)问食堂D建在距离A多远时,可使总路程S最少?
查看答案
如图边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求点P到平面ABCD的距离;
(2)求证:PA∥平面MBD;
(3)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知命题p:(x+1)(x-5)≤0,命题q:1-m≤x≤1+m(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围.
查看答案
已知向量manfen5.com 满分网=(3,1),manfen5.com 满分网=(-1,a),a∈R
(1)若D为BC中点,manfen5.com 满分网=(m,2),求a、m的值;
(2)若△ABC是直角三角形,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.