如右图,对于①,容易证明AD1∥BC1,从而BC1∥平面AD1C,以P为顶点,平面AD1C为底面,易得;对于②,连接A1B,A1C1容易证明平面BA1C1∥面ACD1,从而由线面平行的定义可得;
对于③,由于DC⊥平面BCB1C1,所以DC⊥BC1平面,若DP⊥BC1,则DC与DP重合,与条件矛盾;对于④,容易证明PDB1⊥面ACD1,从而可以证明面面垂直.
【解析】
对于①,容易证明AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C的距离
均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变;正确;
对于②,连接A1B,A1C1容易证明A1C1∥AD1且相等,由于①知:AD1∥BC1,
所以BA1C1∥面ACD1,从而由线面平行的定义可得;正确;
对于③由于DC⊥平面BCB1C1,所以DC⊥BC1平面,若DP⊥BC1,则DC与DP重合,与条件矛盾;错误;对于④,连接DB1,容易证明DB1⊥面ACD1,从而由面面垂直的判定知:正确.
故答案为:①②④