在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.
(1)求证:DE∥平面ABC;
(2)求二面角E-BC-A的余弦;
(3)求多面体ABCDE的体积.
考点分析:
相关试题推荐
在如图所示的空间几何体中,△ABC,△ACD都是等边三角形,AE=CE,DE∥平面ABC,平面ACD⊥平面ABC.
(1)求证:DE⊥平面ACD;
(2)若AB=BE=2,求多面体ABCDE的体积.
查看答案
已知:如图,在正方体ABCD-A
1B
1C
1D
1中,E是CC
1的中点,F是AC,BD的交点.
求证:A
1F⊥平面BED.
查看答案
如图,在直四棱柱ABCD-A
1B
1C
1D
1中,已知DC=DD
1=2AD=2AB,AD⊥DC,AB∥DC.
(1)求证:D
1C⊥AC
1;
(2)设E是DC上一点,试确定E的位置,使D
1E∥平面A
1BD,并说明理由.
查看答案
如图,四边形ABCD是正方形,PB⊥平面ABCD,MA⊥平面ABCD,PB=AB=2MA.求证:
(1)平面AMD∥平面BPC;
(2)平面PMD⊥平面PBD.
查看答案
如图,P是△ABC所在平面外一点,M,N分别是PA和AB的中点,试过点M,N作平行于AC的平面α,要求:
(1)画出平面α分别与平面ABC,平面PBC,平面PAC的交线;
(2)试对你的画法给出证明.
查看答案