满分5 > 高中数学试题 >

已知向量m=(,),n=(,),记f(x)=m•n; (1)若f(x)=1,求的...

已知向量m=(manfen5.com 满分网manfen5.com 满分网),n=(manfen5.com 满分网manfen5.com 满分网),记f(x)=m•n;
(1)若f(x)=1,求manfen5.com 满分网的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
(1)先根据两角和与差的正弦公式将函数f(x)化简为y=Asin(wx+ρ)+b的形式,根据f(x)=1求出sin(),再由二倍角公式求出答案. (2)先根据正弦定理将边的关系转化为角的正弦的关系,再由诱导公式求出cosB得到角B的值,从而可确定角A的范围,再求出范围,得到f(A)的取值范围. 【解析】 (1)f(x)=m•n=sin==sin()+, ∵f(x)=1,∴sin()=, ∴cos(x+)=1-2=. (2)∵(2a-c)cosB=bcosC,∴由正弦定理得(2sinA-sinC)cosB=sinBcosC, ∴2sinAcosB-sinCcosB=sinBcosC,∴2sinAcosB=sin(B+C), ∵A+B+C=π,,∴sin(B+C)=sinA,且sinA≠0, ∴cosB=,B=; ∴0<A<,∴, ∴,; 又∵f(x)=sin()+,∴f(A)=sin()+, 故函数f(A)的取值范围是(1,).
复制答案
考点分析:
相关试题推荐
已知数列{an},a1=a(a>0,a≠1),an=a•an-1(n≥2),定义bn=an•lgan,如果bn是递增数列,求实数a的取值范围.
查看答案
已知函数f(x)=|2x+1|+|2x-3|,
(1)求不等式f(x)≤6的解集.
(2)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.
查看答案
在等比数列{an}中,a1=2,a4=16,
1)求数列{an}的通项公式.
2)求数列{an}的前n项和Sn
3)令manfen5.com 满分网,求数列bn的前n项和Tn
查看答案
如图,为了计算某湖岸边两景点B与C的距离,由于地形的限制,需要在岸上A和D两个测量点,现测得AD⊥CD,AD=10km,AB=14km,∠BDA=60°,∠BCD=135°,求两景点B与C之间的距离(假设A、B、C、D在同一平面内,测量结果精确到0.1km,参考数据:manfen5.com 满分网

manfen5.com 满分网 查看答案
给出下列四个结论:
①已知△ABC中,三边a,b,c满足(a+b+c)(a+b-c)=3ab,则∠C等于120°.
②若等差数列an的前n项和为Sn,则三点manfen5.com 满分网共线.
③等差数列an中,若S10=30,S20=100,则S30=210.
④设manfen5.com 满分网,则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)的值为manfen5.com 满分网
其中,结论正确的是     .(将所有正确结论的序号都写上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.