满分5 > 高中数学试题 >

已知点P是⊙O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足....

已知点P是⊙O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足manfen5.com 满分网
(1)求动点Q的轨迹方程;
(2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的两点M、N,使manfen5.com 满分网(O是坐标原点),若存在,求出直线MN的方程,若不存在,请说明理由.
(1)设Q(x,y),利用向量的坐标运算,结合在⊙O上即可得到点Q的轨迹方程; (2)对于存在性问题的解决方法,可假设存在.由向量关系式得E(1,1)是线段MN的中点,利用中点坐标公式及椭圆的方程式,得到直线MN的斜率值,从而求得直线的方程.结果表明存在. 【解析】 (1)设P(x,y),Q(x,y),依题意,则点D的坐标为D(x,0)(1分) ∴(2分) 又∴(4分) ∵P在⊙O上,故x2+y2=9∴(5分) ∴点Q的轨迹方程为(6分) (2)假设椭圆上存在两个不重合的两点M(x1,y1),N(x2,y2)满足,则E(1,1)是线段MN的中点,且有 又M(x1,y1),N(x2,y2)在椭圆上 ∴ 两式相减,得(12分) ∴∴直线MN的方程为4x+9y-13=0 将直线MN的方程代入椭圆方程检验得:52x2-104x-155=0则△>0有实根 ∴椭圆上存在点M、N满足,此时直线MN的方程为4x+9y-13=0(14分)
复制答案
考点分析:
相关试题推荐
已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)求函数f(x)的单调区间;
(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
查看答案
manfen5.com 满分网某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185)100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
查看答案
如图,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=manfen5.com 满分网,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD.
manfen5.com 满分网
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)若M是侧棱PB中点,截面AMC把几何体分成的两部分,求这两部分的体积之比.
查看答案
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.
查看答案
已知sin(π-α)=manfen5.com 满分网,α∈(0,manfen5.com 满分网).
(1)求sin2α-cos2manfen5.com 满分网的值;
(2)求函数f(x)=manfen5.com 满分网cosαsin2x-manfen5.com 满分网cos2x的单调递增区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.