已知点P是⊙O:x
2+y
2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足
.
(1)求动点Q的轨迹方程;
(2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的两点M、N,使
(O是坐标原点),若存在,求出直线MN的方程,若不存在,请说明理由.
考点分析:
相关试题推荐
已知f(x)=xlnx,g(x)=x
3+ax
2-x+2.
(1)求函数f(x)的单调区间;
(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
查看答案
某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号 | 分组 | 频数 | 频率 |
第1组 | [160,165) | 5 | 0.050 |
第2组 | [165,170) | ① | 0.350 |
第3组 | [170,175) | 30 | ② |
第4组 | [175,180) | 20 | 0.200 |
第5组 | [180,185) | 10 | 0.100 |
合计 | 100 | 1.00 |
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
查看答案
如图,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=
,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)若M是侧棱PB中点,截面AMC把几何体分成的两部分,求这两部分的体积之比.
查看答案
设数列{a
n}的前n项和为S
n,已知a
1=1,S
n+1=4a
n+2(n∈N
*).
(1)设b
n=a
n+1-2a
n,证明数列{b
n}是等比数列;
(2)求数列{a
n}的通项公式.
查看答案
已知sin(π-α)=
,α∈(0,
).
(1)求sin2α-cos
2的值;
(2)求函数f(x)=
cosαsin2x-
cos2x的单调递增区间.
查看答案