满分5 > 高中数学试题 >

在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n...

在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
(Ⅰ)整理an+1=(1+q)an-qan-1得an+1-an=q(an-an-1)代入bn中进而可证明{bn}是等比数列. (Ⅱ)由(Ⅰ)可分别求得a2-a1,a3-a2,…an-an-1,将以上各式相加,答案可得. (Ⅲ)由(Ⅱ),当q=1时,显然a3不是a6与a9的等差中项,判断q≠1.根据a3是a6与a9的等差中项,求得q.用q分别表示出an,an+3与an+6进而根据等差中项的性质可得结论. 【解析】 (Ⅰ)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2. 又b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列. (Ⅱ)由(Ⅰ)a2-a1=1,a3-a2=q, … an-an-1=qn-2,(n≥2). 将以上各式相加,得an-a1=1+q++qn-2(n≥2). 所以当n≥2时, 上式对n=1显然成立. (Ⅲ)由(Ⅱ),当q=1时,显然a3不是a6与a9的等差中项,故q≠1. 由a3-a6=a9-a3可得q5-q2=q2-q8,由q≠0得q3-1=1-q6,① 整理得(q3)2+q3-2=0,解得q3=-2或q3=1(舍去).于是. 另一方面,,. 由①可得an-an+3=an+6-an,n∈N*. 所以对任意的n∈N*,an是an+3与an+6的等差中项.
复制答案
考点分析:
相关试题推荐
若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).
(1)求f(log2x)的最小值及对应的x值;
(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?
查看答案
已知函数manfen5.com 满分网(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的取值范围.
查看答案
已知函数f(x)=x3+(1-a) x2-a(a+2)x+b(a,b∈R).
(I)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;
(Ⅱ)若函数f(x)在区间(-1,1)上不单调,求a的取值范围.
查看答案
数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).
(1)求数列{an}的通项公式.
(2)设bn=manfen5.com 满分网(n∈N*),Sn=b1+b2+…+bn,是否存在最大的整数m,使得任意的n均有Snmanfen5.com 满分网总成立?若存在,求出m;若不存在,请说明理由.
查看答案
记函数f(x)=manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A;
(2)若B⊆A,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.