满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P使...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P使manfen5.com 满分网,则该椭圆的离心率的取值范围为   
由“”的结构特征,联想到在△PF1F2中运用由正弦定理得:两者结合起来,可得到,再由焦点半径公式,代入可得到:a(a+ex)=c(a-ex)解出x,由椭圆的范围,建立关于离心率的不等式求解.要注意椭圆离心率的范围. 【解析】 在△PF1F2中, 由正弦定理得: 则由已知得:, 即:a|PF1|=c|PF2| 设点(x,y)由焦点半径公式, 得:|PF1|=a+ex,|PF2|=a-ex 则a(a+ex)=c(a-ex) 解得: 由椭圆的几何性质知:x>-a则, 整理得e2+2e-1>0,解得:或,又e∈(0,1), 故椭圆的离心率:, 故答案为:.
复制答案
考点分析:
相关试题推荐
求定义域:manfen5.com 满分网查看答案
在数列{an}中,已知a1=2,a2=3,当n≥2时,an+1是an•an-1的个位数,则a2010=    查看答案
连续两次掷一颗质地均匀的骰子,记出现向上的点数分别为m,n,设向量a=(m,n),b=(3,-3),则a与b的夹角为锐角的概率是    查看答案
已知f(x)=sinmanfen5.com 满分网(ω>0),f(manfen5.com 满分网)=f(manfen5.com 满分网),且f(x)在区间manfen5.com 满分网上有最小值,无最大值,则ω=    查看答案
由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.