满分5 > 高中数学试题 >

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,,AF=1. (1)求...

manfen5.com 满分网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,manfen5.com 满分网,AF=1.
(1)求直线DF与平面ACEF所成角的正弦值;
(2)在线段AC上找一点P,使manfen5.com 满分网manfen5.com 满分网所成的角为60°,试确定点P的位置.
(1)以为正交基底,建立如图空间直角坐标系,写出相关点的坐标,求面ACEF的一个法向量,直线DF与平面ACEF所成角的正弦值,即求|c0s|;(2)设出点 P的坐标,求出与,根据向量的数量积的定义求得点P的坐标,确定点P的位置. 【解析】 (1)以为正交基底,建立如图空间直角坐标系, 则,, 因为AC⊥BD,AF⊥BD, 所以是平面ACEF法向量, 又因为, 所以, 故直线DF与平面ACEF所成角正弦值为. (2)设P(a,a,0),则. 因为,所以. 解得,故存在满足条件的点P为AC的中点.
复制答案
考点分析:
相关试题推荐
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F,求证BE平分∠ABC.
manfen5.com 满分网
查看答案
已知正方形ABCD的中心在原点,四个顶点都在函数f(x)=ax3+bx(a>0)图象上.
(1)若正方形的一个顶点为(2,1),求a,b的值,并求出此时函数的单调增区间;
(2)若正方形ABCD唯一确定,试求出b的值.
查看答案
在矩形ABCD中,已知AD=6,AB=2,E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.
(1)求以F、E为焦点,DC和AB所在直线为准线的椭圆的方程.
(2)求⊙H的方程.
(3)设点P(0,b),过点P作直线与⊙H交于M,N两点,若点M恰好是线段PN的中点,求实数b的取值范围.

manfen5.com 满分网 查看答案
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:manfen5.com 满分网,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
查看答案
已知数列{an}是等比数列,Sn为其前n项和.
(1)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列;
(2)设manfen5.com 满分网manfen5.com 满分网,bn=λan-n2,若数列{bn}是单调递减数列,求实数λ的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.