已知
,
,n∈N
*.
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.
考点分析:
相关试题推荐
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,
,AF=1.
(1)求直线DF与平面ACEF所成角的正弦值;
(2)在线段AC上找一点P,使
与
所成的角为60°,试确定点P的位置.
查看答案
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F,求证BE平分∠ABC.
查看答案
已知正方形ABCD的中心在原点,四个顶点都在函数f(x)=ax
3+bx(a>0)图象上.
(1)若正方形的一个顶点为(2,1),求a,b的值,并求出此时函数的单调增区间;
(2)若正方形ABCD唯一确定,试求出b的值.
查看答案
在矩形ABCD中,已知AD=6,AB=2,E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.
(1)求以F、E为焦点,DC和AB所在直线为准线的椭圆的方程.
(2)求⊙H的方程.
(3)设点P(0,b),过点P作直线与⊙H交于M,N两点,若点M恰好是线段PN的中点,求实数b的取值范围.
查看答案
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
查看答案