满分5 > 高中数学试题 >

在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(...

在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)是否存在常数k,使得向量manfen5.com 满分网manfen5.com 满分网共线?如果存在,求k值;如果不存在,请说明理由.
(Ⅰ)先把圆的方程整理成标准方程,进而求得圆心,设出直线方程代入圆方程整理后,根据判别式大于0求得k 的范围, (Ⅱ)A(x1,y1),B(x2,y2),根据(1)中的方程和韦达定理可求得x1+x2的表达式,根据直线方程可求得y1+y2的表达式,进而根据以与共线可推知(x1+x2)=6(y1+y2),进而求得k,根据(1)k的范围可知,k不符合题意. 【解析】 (Ⅰ)圆的方程可写成(x-6)2+y2=4,所以圆心为Q(6,0),过P(0,2) 且斜率为k的直线方程为y=kx+2. 代入圆方程得x2+(kx+2)2-12x+32=0, 整理得(1+k2)x2+4(k-3)x+36=0. ① 直线与圆交于两个不同的点A,B等价于△=[4(k-3)2]-4×36(1+k2)=42(-8k2-6k)>0, 解得,即k的取值范围为. (Ⅱ)设A(x1,y1),B(x2,y2),则, 由方程①,② 又y1+y2=k(x1+x2)+4. ③ 而. 所以与共线等价于(x1+x2)=3(y1+y2), 将②③代入上式,解得. 由(Ⅰ)知,故没有符合题意的常数k.
复制答案
考点分析:
相关试题推荐
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为manfen5.com 满分网

manfen5.com 满分网 查看答案
已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0.AC边上的高BH所在直线为x-2y-5=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.
查看答案
如图,四面体ABCD中,O.E分别为BD.BC的中点,且CA=CB=CD=BD=2,AB=AD=manfen5.com 满分网
(1)求证:AO⊥平面BCD;
(2)求 异面直线AB与CD所成角的余弦值.
查看答案
求过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程.
查看答案
如图,点P为平行四边形ABCD所在平面外一点,点E为PC的中点,在DE上取一点G,过点G和直线AP作平面APG交平面BDE于GH,求证:AP∥GH.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.