(1)由题意an+1=2Sn+3,递推出an的表达式,然后两式相减,即可发现an为等比数列,从而求出an的通项公式;
(2)由(1)数列{an}的通项公式,把a1,a2和a3带进去,再根据等比数列的性质求出,b1,b2,b3,推出bn的通项公式,然后再求其前项和Tn.
【解析】
(1)由an+1=2Sn+3,得an=2sn-1+3(n≥2)(2分)
相减得:an+1-an=2(Sn-Sn-1),即an+1-an=2an,则(4分)
∵当n=1时,a2=2a1+3=9,
∴(5分)
∴数列{an}是等比数列,∴an=3•3n-1=3n(6分)
(2)∵b1+b2+b3=15,b1+b3=2b2,∴b2=5(7分)
由题意,而
设b1=5-d,b2=5,b3=5+d,
∴64=(5-d+1)(5+d+9),
∴d2+8d-20=0,得d=2或d=-10(舍去)(10分)
故(12分)