(1)欲证EF∥平面ABC1D1,根据直线与平面平行的判定定理可知只需证EF与平面ABC1D1内一直线平行,连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,根据中位线定理可知EF∥D1B,满足定理所需条件;
(2)先根据线面垂直的判定定理证出B1C⊥平面ABC1D1,而BD1⊂平面ABC1D1,根据线面垂直的性质可知B1C⊥BD1,而EF∥BD1,根据平行的性质可得结论;
(3)可先证CF⊥平面EFB1,根据勾股定理可知∠EFB1=90°,根据等体积法可知=V C-B1EF,即可求出所求.
【解析】
(1)证明:连接BD1,如图,在△DD1B中,E、F分别为D1D,DB的中点,则
平面ABC1D1.
(2)
(3)∵CF⊥平面BDD1B1,∴CF⊥平面EFB1且,
∵,,
∴EF2+B1F2=B1E2即∠EFB1=90°,
∴
==