满分5 > 高中数学试题 >

已知函数f(x)=|x+2|-|x-1|. (Ⅰ)试求f(x)的值域; (Ⅱ)设...

已知函数f(x)=|x+2|-|x-1|.
(Ⅰ)试求f(x)的值域;
(Ⅱ)设manfen5.com 满分网若对∀s∈(0,+∞),∀t∈(-∞,+∞),恒有g(s)≥f(t)成立,试求实数a的取值范围.
(1)将含有绝对值的函数转化为分段函数,再求分段函数的值域; (2)恒成立问题转化成最小值最大值问题,即g(x)min≥f(x)max. 【解析】 (Ⅰ)函数可化为, ∴f(x)∈[-3,3](5分) (Ⅱ)若x>0,则, 即当ax2=3时,,又由(Ⅰ)知 ∴f(x)max=3(8分) 若对∀s∈(0,+∞),∀t∈(-∞,+∞),恒有g(s)≥f(t)成立, 即g(x)min≥f(x)max, ∴, ∴a≥3,即a的取值范围是[3,+∞).(10分)
复制答案
考点分析:
相关试题推荐
如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.
(1)求证:FB=FC;
(2)求证:FB2=FA•FD;

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网+bx(a>0)且f′(1)=0,
(1)试用含a的式子表示b,并求函数f(x)的单调区间;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)为函数f(x)图象上不同两点,G(x,y)为AB的中点,记AB两点连线斜率为K,证明:f′(x)≠K.
查看答案
已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,短轴长为2.
(1)求椭圆方程;
(2)若椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,经过点manfen5.com 满分网且斜率k的直线l与椭圆交于不同的两点P、Q.是否存在常数k,使得向量manfen5.com 满分网共线?如果存在,求k的值;如果不存在,请说明理由.
查看答案
如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(Ⅰ)求异面直线NE与AM所成角的余弦值;
(Ⅱ)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量234
频数205030
(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(2)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.