满分5 > 高中数学试题 >

已知函数f(x)=,其中,=(cosωx-sinωx,2sinωx),其中ω>0...

已知函数f(x)=manfen5.com 满分网,其中manfen5.com 满分网manfen5.com 满分网=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于manfen5.com 满分网
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=manfen5.com 满分网,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.
(I)利用向量的数量积的坐标表示及二倍角公式对函数整理可得,,根据周期公式可得,根据正弦函数的性质相邻两对称轴间的距离即为,从而有代入可求ω的取值范围. (Ⅱ)由(Ⅰ)可知ω的最大值为1,由f(A)=1可得,结合已知可得,由余弦定理知可得b2+c2-bc=3,又b+c=3联立方程可求b,c,代入面积公式可求 也可用配方法∵求得bc=2,直接代入面积公式可求 【解析】 (Ⅰ)f(x)= cosωx•sinωx=cos2ωx+sin2ωx= ∵ω>0 ∴函数f(x)的周期T=,由题意可知, 解得0<ω≤1,即ω的取值范围是ω|0<ω≤1 (Ⅱ)由(Ⅰ)可知ω的最大值为1, ∴ ∵f(A)=1 ∴ 而π ∴2A+π ∴A= 由余弦定理知cosA= ∴b2+c2-bc=3,又b+c=3 联立解得 ∴S△ABC= (或用配方法∵ ∴bc=2 ∴.
复制答案
考点分析:
相关试题推荐
已知定义域为R的函数f (x)对任意实数x,y满足f(x+y)+f(x-y)=2f (x)cosy,且f(0)=0,f(manfen5.com 满分网)=1.给出下列结论:
①f(manfen5.com 满分网)=manfen5.com 满分网
②f(x)为奇函数  
③f(x)为周期函数  
④f(x)在(0,π)内为单调函数
其中正确的结论是    .( 填上所有正确结论的序号). 查看答案
已知双曲线manfen5.com 满分网的离心率e∈manfen5.com 满分网,在双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则θ的取值范围是    查看答案
在锐角△ABC中,若C=2B,则manfen5.com 满分网的范围是    查看答案
已知点A(-1,0),B(1,0),若点C(x,y)满足manfen5.com 满分网,则|AC|+|BC|=    查看答案
对于实数x,若n∈Z,n≤x<n+1,规定[x]=n,则不等式4[x]2-40[x]+75<0的解集是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.