如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
,BE
,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.
考点分析:
相关试题推荐
已知函数f(x)=
,其中
,
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
.
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.
查看答案
已知定义域为R的函数f (x)对任意实数x,y满足f(x+y)+f(x-y)=2f (x)cosy,且f(0)=0,f(
)=1.给出下列结论:
①f(
)=
②f(x)为奇函数
③f(x)为周期函数
④f(x)在(0,π)内为单调函数
其中正确的结论是
.( 填上所有正确结论的序号).
查看答案
已知双曲线
的离心率e∈
,在双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则θ的取值范围是
.
查看答案
在锐角△ABC中,若C=2B,则
的范围是
.
查看答案
已知点A(-1,0),B(1,0),若点C(x,y)满足
,则|AC|+|BC|=
.
查看答案