已知中心在原点,焦点在坐标轴上的椭圆过M(1,
),N(-
,
)两点.
(1)求椭圆的方程;
(2)在椭圆上是否存在点P(x,y)到定点A(a,0)(其中0<a<3)的距离的最小值为1,若存在,求出a的值及点P的坐标;若不存在,请给予证明.
考点分析:
相关试题推荐
如图,AC是某市一环东线的一段,其中A、B、C分别是林上路、佛陈路、花卉大道出口,经测量花卉世界D位于点A的北偏东30°方向8km处,位于点B的正北方向,位于点C的北偏西75°方向上,并且AB=5km.
(1) 求佛陈路出口B与花卉世界D之间的距离;(精确到0.1km)
(2) 求花卉大道出口C与花卉世界D之间的距离.(精确到0.1km)
查看答案
如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
,BE
,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.
查看答案
已知函数f(x)=
,其中
,
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
.
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.
查看答案
已知定义域为R的函数f (x)对任意实数x,y满足f(x+y)+f(x-y)=2f (x)cosy,且f(0)=0,f(
)=1.给出下列结论:
①f(
)=
②f(x)为奇函数
③f(x)为周期函数
④f(x)在(0,π)内为单调函数
其中正确的结论是
.( 填上所有正确结论的序号).
查看答案
已知双曲线
的离心率e∈
,在双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则θ的取值范围是
.
查看答案