满分5 > 高中数学试题 >

对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名...

对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30)20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

manfen5.com 满分网
(I)根据频率,频数和样本容量之间的关系即频率等于频数除以样本容量,写出算式,求出式子中的字母的值. (II)根据该校高三学生有240人,分组[10,15)内的频率是0.25,估计该校高三学生参加社区服务的次数在此区间内的人数为60人. (III)这个样本参加社区服务的次数不少于20次的学生共有m+2=6人,设出在区间[20,25)内的人为a1,a2,a3,a4,在区间[25,30)内的人为b1,b2,列举出所有事件和满足条件的事件,得到概率. 【解析】 (Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,, ∴M=40. ∵频数之和为40, ∴10+24+m+2=40,m=4.. ∵a是对应分组[15,20)的频率与组距的商, ∴ (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25, ∴估计该校高三学生参加社区服务的次数在此区间内的人数为60人. (Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有m+2=6人, 设在区间[20,25)内的人为a1,a2,a3,a4,在区间[25,30)内的人为b1,b2. 则任选2人共有(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2)15种情况, 而两人都在[25,30)内只能是(b1,b2)一种, ∴所求概率为.
复制答案
考点分析:
相关试题推荐
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,D为BC中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求证:C1A⊥B1C.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网,求f(x)的最大值和最小值.
查看答案
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.在这个定义下,给出下列命题:
①到原点的“折线距离”等于1的点的集合是一个正方形;
②到原点的“折线距离”等于1的点的集合是一个圆;
③到M(-1,0),N(1,0)两点的“折线距离”之和为4的点的集合是面积为6的六边形;
④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合是两条平行线.
其中正确的命题是    .(写出所有正确命题的序号) 查看答案
已知双曲线manfen5.com 满分网的离心率为2,它的一个焦点与抛物线y2=8x的焦点相同,那么双曲线的焦点坐标为    ;渐近线方程为    查看答案
在△ABC中,若manfen5.com 满分网manfen5.com 满分网,则c=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.