满分5 > 高中数学试题 >

已知椭圆C:=1(a>b>0)的一个焦点坐标为(1,0),且长轴长是短轴长的倍....

已知椭圆C:manfen5.com 满分网=1(a>b>0)的一个焦点坐标为(1,0),且长轴长是短轴长的manfen5.com 满分网倍.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,椭圆C与直线y=kx+1相交于两个不同的点A,B,线段AB的中点为P,若直线OP的斜率为-1,求△OAB的面积.
(I)先根据题意得关于a,b,c的方程,进而结合椭圆中a,b,c的关系求得a,b,则椭圆方程可得. (II)设A(0,1),B(x1,y1),P(x,y),联立,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合求根公式,利用弦长公式即可求得k值,从而解决问题. 【解析】 (Ⅰ)由题意得,(2分) 又a2-b2=1,所以b2=1,a2=2.(3分) 所以椭圆的方程为.(4分) (Ⅱ)设A(0,1),B(x1,y1),P(x,y), 联立消去y得(1+2k2)x2+4kx=0(*),(6分) 解得x=0或,所以, 所以,,(8分) 因为直线OP的斜率为-1,所以, 解得(满足(*)式判别式大于零).(10分) O到直线的距离为,(11分) =,(12分) 所以△OAB的面积为.(13分)
复制答案
考点分析:
相关试题推荐
对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30)20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

manfen5.com 满分网 查看答案
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,D为BC中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求证:C1A⊥B1C.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网,求f(x)的最大值和最小值.
查看答案
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.在这个定义下,给出下列命题:
①到原点的“折线距离”等于1的点的集合是一个正方形;
②到原点的“折线距离”等于1的点的集合是一个圆;
③到M(-1,0),N(1,0)两点的“折线距离”之和为4的点的集合是面积为6的六边形;
④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合是两条平行线.
其中正确的命题是    .(写出所有正确命题的序号) 查看答案
已知双曲线manfen5.com 满分网的离心率为2,它的一个焦点与抛物线y2=8x的焦点相同,那么双曲线的焦点坐标为    ;渐近线方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.