满分5 > 高中数学试题 >

如图,在正三棱柱ABC-A1B1C1中,,D是A1B1的中点,点E在A1C1上,...

如图,在正三棱柱ABC-A1B1C1中,manfen5.com 满分网,D是A1B1的中点,点E在A1C1上,且DE⊥AE.
(1)证明:平面ADE⊥平面ACC1A1
(2)求直线AD和平面ABC1所成角的正弦值.

manfen5.com 满分网
(1)欲证平面ADE⊥平面ACC1A1,根据面面垂直的判定定理可知在平面ADE内一直线与平面ACC1A1垂直,而根据DE⊥AA1而DE⊥AE.AA1∩AE=A满足线面垂直的判定定理可知DE⊥平面ACC1A1; (2)设F是AB的中点,连接DF、DC、CF,可证平面ABC1⊥平面C1DF,过点D作DH垂直C1F于点H,则DH⊥平面ABC1,连接AH,则∠HAD是AD和平面ABC1所成的角.在三角形HAD中求出此角即可. 【解析】 (1)如图所示,由正三棱柱ABC-A1B1C1的性质知A1A1⊥平面A1B1C1 又DE⊂平面A1B1C1,所以DE⊥AA1. 而DE⊥AE.AA1∩AE=A所以DE⊥平面ACC1A1, 又DE⊂平面ADE,故平面ADE⊥平面ACC1A1. (2)如图所示,设F是AB的中点,连接DF、DC、CF, 由正三棱柱ABC-A1B1C1的性质及D是A1B的中点知A1B1⊥C1D, A1B1⊥DF又C1D∩DF=D,所以A1B1⊥平面C1DF, 而AB∥A1B1,所以 AB⊥平面C1DF,又AB⊂平面ABC1,故 平面ABC1⊥平面C1DF. 过点D做DH垂直C1F于点H,则DH⊥平面ABC1. 连接AH,则∠HAD是AD和平面ABC1所成的角. 由已知AB=AA1,不妨设AA1=,则AB=2,DF=,DC1=, C1F=,AD==,DH===, 所以sin∠HAD==. 即直线AD和平面ABC1所成角的正弦值为.
复制答案
考点分析:
相关试题推荐
移动公司进行促销活动,促销方案为顾客消费1000元,便可获得奖券一张,每张奖券中奖的概率为manfen5.com 满分网,中奖后移动公司返还顾客现金1000元,小李购买一台价格2400元的手机,只能得2张奖券,于是小李补偿50元给同事购买一台价格600元的小灵通(可以得到三张奖券),小李抽奖后实际支出为ξ(元);
(1)求ξ的分布列;
(2)试说明小李出资50元增加1张奖券是否划算.
查看答案
已知函数f(x)=cosx+cos(x+manfen5.com 满分网),x∈R,
(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调增区间;(Ⅲ)若f(a)=manfen5.com 满分网,求sin2α的值.
查看答案
给出下列命题:
①关于x的不等式(a-2)x2+(a-2)x+1>0的解集为R的充要条件是2<a<6;
②我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{1,3,5,7,9}的“孙集”有26个.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)无实数根,则方程f[f(x)]=x也一定没有实数根;
④若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列.
其中正确命题的序号是    查看答案
已知三棱锥S-ABC的底面是正三角形,点A在侧面SBC上的射影H是△SBC的垂心,SA=a,则此三棱锥体积最大值是    查看答案
函数y=manfen5.com 满分网(x2-2mx+3),在(-∞,1)上为增函数,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.