满分5 > 高中数学试题 >

已知函数f(x)定义在区间(-1,1)上,f()=-1,且当x,y∈(-1,1)...

已知函数f(x)定义在区间(-1,1)上,f(manfen5.com 满分网)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(manfen5.com 满分网),又数列{an}满足a1=manfen5.com 满分网,an+1=manfen5.com 满分网,设bn=manfen5.com 满分网
(1)证明:f(x)在(-1,1)上为奇函数;
(2)求f(an)的表达式;
(3)是否存在正整数m,使得对任意n∈N,都有bnmanfen5.com 满分网成立,若存在,求出m的最小值;若不存在,请说明理由.
(1)用赋值法:先x=y=0推f(0)=0,再令x=0推f(-y)=-f(y),即可证明:f(x)在(-1,1)上为奇函数; (2)先求出数列 {f(an)}的首项,再利用题中条件an+1=以及f(x)-f(y)=f()求出f(an)与f(an+1)之间的递推关系,即可求 f(an)的表达式; (3)先利用(2)的结论求出bn的表达式,再代入bn<利用函数的单调性求出最值即可求出m的最小值. 【解析】 (1)证明:令x=y=0,则f(0)=0,再令x=0,得f(0)-f(y)=f(-y), ∴f(-y)=-f(y),y∈(-1,1), ∴f(x)在(-1,1)上为奇函数.(3分) (2)∵, ∴, 即 ∴{f(an)}是以-1为首项,2为公比的等比数列, ∴f(an)=-2n-1.(7分) (3)∵. 若恒成立(n∈N+),则. ∵n∈N+,∴当n=1时,有最大值4,故m>4. 又∵m∈N,∴存在m=5,使得对任意n∈N+,有.(14分)
复制答案
考点分析:
相关试题推荐
如图,在正三棱柱ABC-A1B1C1中,manfen5.com 满分网,D是A1B1的中点,点E在A1C1上,且DE⊥AE.
(1)证明:平面ADE⊥平面ACC1A1
(2)求直线AD和平面ABC1所成角的正弦值.

manfen5.com 满分网 查看答案
移动公司进行促销活动,促销方案为顾客消费1000元,便可获得奖券一张,每张奖券中奖的概率为manfen5.com 满分网,中奖后移动公司返还顾客现金1000元,小李购买一台价格2400元的手机,只能得2张奖券,于是小李补偿50元给同事购买一台价格600元的小灵通(可以得到三张奖券),小李抽奖后实际支出为ξ(元);
(1)求ξ的分布列;
(2)试说明小李出资50元增加1张奖券是否划算.
查看答案
已知函数f(x)=cosx+cos(x+manfen5.com 满分网),x∈R,
(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调增区间;(Ⅲ)若f(a)=manfen5.com 满分网,求sin2α的值.
查看答案
给出下列命题:
①关于x的不等式(a-2)x2+(a-2)x+1>0的解集为R的充要条件是2<a<6;
②我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{1,3,5,7,9}的“孙集”有26个.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)无实数根,则方程f[f(x)]=x也一定没有实数根;
④若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列.
其中正确命题的序号是    查看答案
已知三棱锥S-ABC的底面是正三角形,点A在侧面SBC上的射影H是△SBC的垂心,SA=a,则此三棱锥体积最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.