阅读下面所给材料:已知数列{a
n},a
1=2,a
n=3a
n-1+2,求数列的通项a
n.
【解析】
令a
n=a
n-1=x,则有x=3x+2,所以x=-1,故原递推式a
n=3a
n-1+2可转化为:
a
n+1=3(a
n-1+1),因此数列{a
n+1}是首项为a
1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{a
n},a
1=1,a
n=3a
n-1+4,
(1)求数列的通项a
n;并用解析几何中的有关思想方法来解释其原理;
(2)若记S
n=
,求
S
n;
(3)若数列{b
n}满足:b
1=10,b
n+1=100b
n3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{b
n}的通项公式b
n.
考点分析:
相关试题推荐
设a为实数,函数f(x)=x|x-a|,其中x∈R.
(1)分别写出当a=0.a=2.a=-2时函数f(x)的单调区间;
(2)判断函数f(x)的奇偶性,并加以证明.
查看答案
在△ABC中,A为锐角,a=30,△ABC的面积S=105,外接圆半径R=17.
(1)求sinA.cosA的值; (2)求△ABC的周长.
查看答案
复数
是一元二次方程ax
2+bx+1=0(a,b∈R)的根,
(1)求a和b的值; (2)若
(u∈C),求u.
查看答案
设函数f(x)=-cos
2x-4tsin
cos
+2t
2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t).
(1)求函数g(t)的表达式;
(2)判断g(t)在[-1,1]上的单调性,并求出g(t)的最值.
查看答案
方程|x-2|=log
2x的解的个数为( )
A.0
B.1
C.2
D.3
查看答案