满分5 > 高中数学试题 >

在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、...

在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.

manfen5.com 满分网
解法一:(Ⅰ)以C为原点,分别以CB、CA、CC1为x轴、y轴、z轴建立空间直角坐标系,写出有关点的坐标,利用向量数量积为零即可求得结果; (Ⅱ)求出平面EFG的法向量的一个法向量,利用直线的方向向量与法向量的夹角与直线与平面所成角之间的关系即可求得结果; 解法二:(Ⅰ)取AC的中点D,连接DE、DG,则ED∥BC,利用线面垂直的判定和性质定理即可求得结果;(Ⅱ)取CC1的中点M,连接GM、FM,则EF∥GM,找出直线与平面所成的角,解三角形即可求得结果. 解法一:(Ⅰ)以C为原点,分别以CB、CA、CC1为x轴、y轴、z轴建立空间直角坐标系,则F(1,0,0),E(1,1,0),A(0,2,0),C1(0,0,2), 设G(0,2,h),则.∵AC1⊥EG,∴. ∴-1×0+1×(-2)+2h=0.∴h=1,即G是AA1的中点. (Ⅱ)设是平面EFG的法向量,则. 所以平面EFG的一个法向量m=(1,0,1) ∵, ∴,即AC1与平面EFG所成角θ为 解法二:(Ⅰ)取AC的中点D,连接DE、DG,则ED∥BC ∵BC⊥AC,∴ED⊥AC. 又CC1⊥平面ABC,而ED⊂平面ABC,∴CC1⊥ED. ∵CC1∩AC=C,∴ED⊥平面A1ACC1. 又∵AC1⊥EG,∴AC1⊥DG. 连接A1C,∵AC1⊥A1C,∴A1C∥DG. ∵D是AC的中点,∴G是AA1的中点. (Ⅱ)取CC1的中点M,连接GM、FM,则EF∥GM, ∴E、F、M、G共面.作C1H⊥FM,交FM的延长线于H,∵AC⊥平面BB1C1C, C1H⊂平面BB1C1C,∴AC⊥G1H,又AC∥GM,∴GM⊥C1H.∵GM∩FM=M, ∴C1H⊥平面EFG,设AC1与MG相交于N点,所以∠C1NH为直线AC1与平面EFG所成角θ. 因为,∴,∴.
复制答案
考点分析:
相关试题推荐
数列{an}满足Sn=2n-an,n∈N*,先计算前4项后,猜想an的表达式,并用数学归纳法证明.
查看答案
已知函数f(x)=ax3+bx在x=3时取得极值-54
(Ⅰ)求a,b的值
(Ⅱ)求曲线y=f(x)与x轴围成图形的面积.
查看答案
在R上的可导函数f(x)=manfen5.com 满分网x3+manfen5.com 满分网ax2+2bx+c,当x∈(0,1)时取得极大值,当x∈(1,2)时取得极小值,则manfen5.com 满分网的范围是    查看答案
已知等差数列{an}中,有manfen5.com 满分网=manfen5.com 满分网成立.类似地,在等比数列{bn}中,有     成立. 查看答案
已知a∈[0,manfen5.com 满分网],则当∫a(cosx-sinx)dx取最大值时,a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.