根据已知的由a2和a5的值,利用等比数列的性质即可求出公比q的值,由等比数列的通项公式求出a1的值,进而得到a1a2的值,得到数列{anan+1}为等比数列,由首项和公比,利用等比数列的前n项和公式表示出数列的前n项和,即可得到所求式子的取值范围.
【解析】
由a2=2,a5=,得到q3==,解得q=,
且a1==4,所以数列{anan+1}是以8为首项,为公比的等比数列,
则a1a2+a2a3+…+anan+1==(1-4-n),
所以a1a2+a2a3+…+anan+1(n∈N*)的取值范围是[8,).
故选C