满分5 > 高中数学试题 >

设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A...

设F1,F2分别为椭圆manfen5.com 满分网(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的焦距;
(Ⅱ)如果manfen5.com 满分网,求椭圆C的方程.
(Ⅰ)过F1作F1⊥l可直接根据直角三角形的边角关系得到,求得c的值,进而可得到焦距的值. (Ⅱ)假设点A,B的坐标,再由点斜式得到直线l的方程,然后联立直线与椭圆方程消去x得到关于y的一元二次方程,求出两根,再由可得y1与y2的关系,再结合所求得到y1与y2的值可得到a,b的值,进而可求得椭圆方程. 【解析】 (Ⅰ)设焦距为2c,由已知可得F1到直线l的距离. 所以椭圆C的焦距为4. (Ⅱ)设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0,直线l的方程为. 联立. 解得. 因为. 即. 得. 故椭圆C的方程为.
复制答案
考点分析:
相关试题推荐
在△ABC中,角A、B、C的对边分别为a、b、c,且2b•cosA=c•cosA+a•cosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=manfen5.com 满分网,b+c=4,求△ABC的面积.
查看答案
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假.求实数m的取值范围.
查看答案
对正整数n,设抛物线y2=2(2n+1)x,过P(2n,0)任作直线l交抛物线于An,Bn两点,则数列manfen5.com 满分网的前n项和公式是    查看答案
在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
则满足条件①、②、③的轨迹方程分别为    (用代号C1、C2、C3填入).
条  件方  程
①△ABC的周长为10C1:y2=25
②△ABC的面积为10C2:x2+y2=4(y≠0)
③△ABC中,∠A=90°C3manfen5.com 满分网
查看答案
给定下列命题:
①“若m>0,则方程x2+2x-m=0有实数根”的逆否命题;
②“x=1”是“x2-3x+2=0”的充分不必要条件.
③“矩形的对角线相等”的逆命题;
④全称命题“∀x∈R,x2+x+3>0”的否定是“∃x∈R,x2+x+3≤0”
其中真命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.