满分5 > 高中数学试题 >

设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且...

设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1,n=1,2,…,求数列{bn}的前n项和Tn
(1)由{an}是公比大于1的等比数列,S3=7,且a1+3,3a2,a3+4构成等差数列,我们不难构造方程组,解方程组即可求出相关基本量,进而给出数列{an}的通项公式. (2)由bn=lna3n+1,n=1,2,…,我们易给出数列{bn}的通项公式,分析后可得:数列{bn}是一个等差数列,代入等差数列前n项和公式即可求出Tn 【解析】 (1)由已知得 解得a2=2. 设数列{an}的公比为q,由a2=2, 可得. 又S3=7,可知, 即2q2-5q+2=0, 解得 由题意得q>1, ∴q=2 ∴a1=1.故数列{an}的通项为an=2n-1. (2)由于bn=lna3n+1,n=1,2, 由(1)得a3n+1=23n ∴bn=ln23n=3nln2又bn+1-bn=3ln2n ∴{bn}是等差数列. ∴Tn=b1+b2++bn = = =. 故.
复制答案
考点分析:
相关试题推荐
设F1,F2分别为椭圆manfen5.com 满分网(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的焦距;
(Ⅱ)如果manfen5.com 满分网,求椭圆C的方程.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,且2b•cosA=c•cosA+a•cosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=manfen5.com 满分网,b+c=4,求△ABC的面积.
查看答案
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假.求实数m的取值范围.
查看答案
对正整数n,设抛物线y2=2(2n+1)x,过P(2n,0)任作直线l交抛物线于An,Bn两点,则数列manfen5.com 满分网的前n项和公式是    查看答案
在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
则满足条件①、②、③的轨迹方程分别为    (用代号C1、C2、C3填入).
条  件方  程
①△ABC的周长为10C1:y2=25
②△ABC的面积为10C2:x2+y2=4(y≠0)
③△ABC中,∠A=90°C3manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.