满分5 > 高中数学试题 >

已知函数f(x)=axlnx图象上点(e,f(e))处的切线方程与直线y=2x平...

已知函数f(x)=axlnx图象上点(e,f(e))处的切线方程与直线y=2x平行(其中e=2.71828…),g(x)=x2-tx-2.
(I)求函数f(x)的解析式;
(II)求函数f(x)在[n,n+2](n>0)上的最小值;
(III)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
(I)根据切线方程与直线y=2x平行得到切线的斜率为2,即可得到f'(e)=2,求出函数的导函数把f'(e)=2代入即可求出a的值得到函数的解析式; (II)令f′(x)=0求出x的值为,由函数定义域x∈(0,+∞),所以在(0,)和(,+∞)上讨论函数的增减性,分两种情况:当属于[n,n+2]得到函数的最小值为f();当≤n≤n+2时,根据函数为单调增得到函数的最小值为f(n),求出值即可; (III)把g(x)的解析式代入不等式3f(x)≥g(x)中解出,然后令h(x)=,求出h′(x)=0时x的值,然后在定义域(0,+∞)上分区间讨论函数的增减性,求出h(x)的最大值,t要大于等于h(x)的最大值即为不等数恒成立,即可求出t的取值范围. 【解析】 (I)由点(e,f(e))处的切线方程与直线2x-y=0平行, 得该切线斜率为2,即f'(e)=2. 又∵f'(x)=a(lnx+1),令a(lne+1)=2,a=1, 所以f(x)=xlnx. (II)由(I)知f'(x)=lnx+1, 显然f'(x)=0时x=e-1当时f'(x)<0, 所以函数上单调递减. 当时f'(x)>0, 所以函数f(x)在上单调递增, ①时,; ②时,函数f(x)在[n,n+2]上单调递增, 因此f(x)min=f(n)=nlnn; 所以; (III)对一切x∈(0,e],3f(x)≥g(x)恒成立, 又g(x)=x2-tx-2, ∴3xlnx≥x2-tx-2, 即. 设, 则, 由h'(x)=0得x=1或x=2, ∴x∈(0,1),h'(x)>0,h(x)单调递增, x∈(1,2),h'(x)>0,h(x)单调递减, x∈(2,e),h'(x)>0,h(x)单调递增, ∴h(x)极大值=h(1)=-1,且h(e)=e-3-2e-1<-1, 所以h(x)max=h(1)=-1. 因为对一切x∈(0,e],3f(x)≥g(x)恒成立, ∴t≥h(x)max=-1. 故实数t的取值范围为[-1,+∞).
复制答案
考点分析:
相关试题推荐
已知椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且manfen5.com 满分网
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.
查看答案
已知等差数列{an}的首项a1=1,公差d>0、且a2,a5,a14分别是等比数列{bn}的b2,b3,b4
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意自然数n均有:manfen5.com 满分网成立、求c1+c2+c3+…+c2010的值.
查看答案
如图,已知直角梯形A1所在的平面垂直于平面B1,C1,D1,AB1⊂.
(1)在直线AB1C上是否存在一点D1E⊄,使得AB1C平面∴?请证明你的结论;
(2)求平面D1E与平面ACB1所成的锐二面角B1C2+B1E2=4=CE2的余弦值.

manfen5.com 满分网 查看答案
东莞市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为manfen5.com 满分网,不堵车的概率为manfen5.com 满分网;汽车走公路②堵车的概率为p,不堵车的概率为1-p.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为manfen5.com 满分网,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.
查看答案
设锐角△ABC的三内角A,B,C的对边分别为 a,b,c,向量manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网,已知manfen5.com 满分网manfen5.com 满分网共线.   
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,manfen5.com 满分网,且△ABC的面积小于manfen5.com 满分网,求角B的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.