满分5 > 高中数学试题 >

设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△O...

设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
A.y2=±4
B.y2=4
C.y2=±8
D.y2=8
先根据抛物线方程表示出F的坐标,进而根据点斜式表示出直线l的方程,求得A的坐标,进而利用三角形面积公式表示出三角形的面积建立等式取得a,则抛物线的方程可得. 【解析】 抛物线y2=ax(a≠0)的焦点F坐标为, 则直线l的方程为, 它与y轴的交点为A, 所以△OAF的面积为, 解得a=±8. 所以抛物线方程为y2=±8x, 故选C.
复制答案
考点分析:
相关试题推荐
若点P(2,0)到双曲线manfen5.com 满分网的一条渐近线的距离为manfen5.com 满分网,则双曲线的离心率为( )manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
f(x)=ax2+ax-1在R上满足f(x)<0恒成立,则a的取值范围是( )
A.a≤0
B.a<-4
C.-4<a<0
D.-4<a≤0
查看答案
等差数列{an}中,a1+a2+…+a50=200,a51+a52+…+a100=2700,则a1等于( )
A.-1221
B.-21.5
C.-20.5
D.-20
查看答案
△ABC中,a=1,b=manfen5.com 满分网,A=30°,则B等于( )
A.60°
B.60°或120°
C.30°或150°
D.120°
查看答案
已知抛物线C:y2=x与直线l:y=kx+l,k≠0“”是“直线l与抛物线C有两个不同交点”的( )
A.充分不必要条件
B.必要不充分条件;
C.充要条件
D.既不充分也不必要条件
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.