满分5 > 高中数学试题 >

设f(x)=ax3+bx2+cx的极小值为-8,其导函数y=f'(x)的图象经过...

manfen5.com 满分网设f(x)=ax3+bx2+cx的极小值为-8,其导函数y=f'(x)的图象经过点manfen5.com 满分网,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[-3,3]都有f(x)≥m2-14m恒成立,求实数m的取值范围.
(1)求出y=f'(x),因为导函数图象经过(-2,0)和(,0),代入即可求出a、b、c之间的关系式,再根据图象可知函数的单调性,而f(x)极小值为-8可得f(-2)=-8,解出即可得到a、b、c的值; (2)根据函数增减性求出函数在区间[-3,3]的最小值大于等于m2-14m,即可求出m的范围. 【解析】 (1)∵f'(x)=3ax2+2bx+c,且y=f'(x)的图象经过点(-2,0),, ∴ ∴f(x)=ax3+2ax2-4ax, 由图象可知函数y=f(x)在(-∞,-2)上单调递减,在上单调递增,在上单调递减, 由f(x)极小值=f(-2)=a(-2)3+2a(-2)2-4a(-2)=-8,解得a=-1 ∴f(x)=-x3-2x2+4x (2)要使对x∈[-3,3]都有f(x)≥m2-14m恒成立, 只需f(x)min≥m2-14m即可. 由(1)可知函数y=f(x)在[-3,2)上单调递减,在上单调递增,在上单调递减 且f(-2)=-8,f(3)=-33-2×32+4×3=-33<-8 ∴f(x)min=f(3)=-33(11分)-33≥m2-14m⇒3≤m≤11 故所求的实数m的取值范围为{m|3≤m≤11}.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ex(x2+ax+1).
(1)若曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求a的值;
(2)求函数f(x)的极值.
查看答案
一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?
查看答案
设函数f(x)=ax2+2x+blnx在x=1和x=2时取得极值.(ln2≈0.7)
(1)求a、b的值;
(2)求函数f(x)在manfen5.com 满分网上的最大值和最小值.
查看答案
已知manfen5.com 满分网,求函数f(x)的单调区间及其极值.
查看答案
求由抛物线y2=8x(y>0)与直线x+y-6=0及y=0所围成图形的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.