满分5 > 高中数学试题 >

已知函数f(x)=alnx+x2(a为实常数). (Ⅰ)若a=-2,求证:函数f...

已知函数f(x)=alnx+x2(a为实常数).
(Ⅰ)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值.
(Ⅰ)将a=-2代入,然后求出导函数f'(x),欲证函数f(x)在(1,+∞)上是增函数只需证导函数在(1,+∞)上恒大于零即可; (Ⅱ)先求出导函数f'(x),然后讨论a研究函数在[1,e]上的单调性,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值. 【解析】 (Ⅰ)当a=-2时,f(x)=x2-2lnx,当x∈(1,+∞),, 故函数f(x)在(1,+∞)上是增函数. (Ⅱ),当x∈[1,e],2x2+a∈[a+2,a+2e2]. 若a≥-2,f'(x)在[1,e]上非负(仅当a=-2,x=1时,f'(x)=0), 故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1. 若-2e2<a<-2,当时,f'(x)=0;当时,f'(x)<0, 此时f(x)是减函数;当时,f'(x)>0,此时f(x)是增函数. 故[f(x)]min== 若a≤-2e2,f'(x)在[1,e]上非正(仅当a=-2e2,x=e时,f'(x)=0), 故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2. 综上可知,当a≥-2时,f(x)的最小值为1,相应的x值为1; 当-2e2<a<-2时,f(x)的最小值为,相应的x值为; 当a≤-2e2时,f(x)的最小值为a+e2,相应的x值为e
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx2+cx+d是R上的奇函数,且在x=1时取得极小值-manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)对任意x1,x2∈[-1,1],证明:f(x1)-f(x2)≤manfen5.com 满分网
查看答案
直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=manfen5.com 满分网
(1)求证:平面AB1C⊥平面B1CB;    (2)求三棱锥A1-AB1C的体积.

manfen5.com 满分网 查看答案
设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为2manfen5.com 满分网,求圆的方程.
查看答案
已知集合manfen5.com 满分网;命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.
查看答案
如果圆(x-a)2+(y-a)2=4上总存在两个点到原点的距离为1,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.