满分5 > 高中数学试题 >

已知f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(...

已知f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+2lnx,(a<0,a∈R)
(1)求f(x)的解析式;
(2)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是4?如果存在,求出a的值;如果不存在,请说明理由.
(1)设x∈[-e,0),利用函数为奇函数,得到f(-x)=-f(x),将f(-x)的值代入,求出f(x)在x∈[-e,0)的解析式. (2)求出f′(x)=0的根,讨论根不在定义域内时,函数在定义域上递增,求出最小值,令最小值等于4,求a;根在定义域内,列出x,f′(x),f(x)d的变化情况表,求出函数的最小值,列出方程求a值. 【解析】 (1)设x=[-e,0),则-x∈(0,e]∴f(-x)=-ax+2ln(-x).∵f(x)是定义在[-e,0)∪(0,e],上的奇函数,∴f(x)=-f(-x)=ax-2ln(-x). 故函数f(x)的解析式为: (2)假设存在实数a,使得当x∈(-e,0]时,f(x)=ax-2ln(-x)有最小值是3. ∵. ①当时, 由于x∈[-e,0),则f'(x)≥0.故函数f(x)=ax-2ln(-x)是[-e,0)上的增函数. ∴所以f(x)min=f(-e)=-ae-2=4,解得(舍去) ②当 x f'(x) - + f(x) ↘ ↗ ∴,解得a=-2e 综上所知,存在实数a=-2e,使得当x∈[-e,0)时,f(x)最小值4.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+ax2+x+1,a∈R.
(1)讨论函数f(x)的单调区间;
(2)设函数f(x)在区间manfen5.com 满分网内是减函数,求a的取值范围.
查看答案
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,manfen5.com 满分网
(1)若不等式f(x)>4的解集为{x|x<-3或x>1},求F(x)的表达式;
(2)在(1)的条件下,当x∈[-1,1]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m•n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?
查看答案
已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|x2-2mx+m2-9≤0,x∈R,m∈R}
(1)若A∩B=[2,3],求实数m的值;
(2)若p是¬q的充分条件,求实数m的取值范围.
查看答案
已知函数manfen5.com 满分网.讨论函数f(x)的奇偶性,并说明理由.
查看答案
定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:
①f(x)是周期函数;
②f(x)的图象关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(2)=f(0).
其中正确的判断是    (把你认为正确的判断都填上). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.