满分5 > 高中数学试题 >

为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,R...

为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区.AB=100m,BC=80m,AE=30m,AF=20m.     
(1)求直线EF的方程.
(2)应如何设计才能使草坪的占地面积最大?

manfen5.com 满分网
(1)建立平面直角坐标系,直线EF过点E(30,0),F(0,20),其方程由截距式可得; (2)点Q在直线EF上,可设点Q(x,20-x),矩形PQRC的面积S=(100-x)•[80-(20-x)],计算S取最大值时对应的x的值,从而得点Q的坐标即可. 【解析】 (1)建立坐标系如图所示,在线段EF上任取一点Q,分别向BC,CD作垂线. 由题意,直线EF的方程为:; (2)设Q(x,20-x),则矩形PQRC的面积为:S=(100-x)•[80-(20-x)](其中0≤x≤30); 化简,得S=-x2+x+6000  (其中0≤x≤30); 所以,当x=-=5时,此时y=20-×5=,即取点Q(5,)时,S有最大值,最大值为6016m2.
复制答案
考点分析:
相关试题推荐
已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)证明:不论m取什么实数时,直线l与圆恒交于两点;
(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.
查看答案
如图,在正方体ABCD-A1B1C1D1中,E、F、G为棱AD、AB、A1A的中点.
(1)求证:平面EFG∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1
(3)求异面直线FG、B1C所成的角.

manfen5.com 满分网 查看答案
如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC′,证明:BC′∥面EFG.
manfen5.com 满分网
查看答案
集合N={(x,y)|(x-1)2+(y-1)2≤r2,r>0},M={(x,y)|x2+y2≤4},若M∩N=N,则实数r的取值范围为    查看答案
球的表面积与它的内接正方体的表面积之比是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.