满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R, (1)若f(-1)...

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,manfen5.com 满分网
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?
(1)f(-1)=0⇒a-b+1=0,又值域为[0,+∞)即最小值为0⇒4a-b2=0,求出f(x)的表达式再求F(x)的表达式即可; (2)把g(x)的对称轴求出和区间端点值进行分类讨论即可. (3)f(x)为偶函数⇒对称轴为0⇒b=0,把F(m)+F(n)转化为f(m)-f(n)=a(m2-n2)再利用m>0,n<0,m+n>0,a>0来判断即可. 【解析】 (1)∵f(-1)=0, ∴a-b+1=0①(1分) 又函数f(x)的值域为[0,+∞),所以a≠0 且由知即4a-b2=0② 由①②得a=1,b=2(3分) ∴f(x)=x2+2x+1=(x+1)2. ∴(5分) (2)由(1)有g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=,(7分) 当或时, 即k≥6或k≤-2时,g(x)是具有单调性.(9分) (3)∵f(x)是偶函数 ∴f(x)=ax2+1,∴,(11分) ∵m>0,n<0,设m>n,则n<0.又m+n>0,m>-n>0, ∴|m|>|-n|(13分) ∴F(m)+F(n)=f(m)-f(n)=(am2+1)-an2-1=a(m2-n2)>0, ∴F(m)+F(n)能大于零.(16分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)判断函数f(x)的奇偶性
(2)若a=1,证明:f(x)在区间[2,+∞)是增函数.
(3)若f(x)在区间[2,+∞)是增函数,求实数a的取值范围.
查看答案
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:manfen5.com 满分网,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
查看答案
若x、y、z均为实数,且a=x2-2y+manfen5.com 满分网,b=y2-2z+manfen5.com 满分网,c=z2-2x+manfen5.com 满分网,则a、b、c中是否至少有一个大于零?请说明理由.
查看答案
命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.若“p或q”为真命题,求m的取值范围.
查看答案
已知复数z=m(m-1)+(m2+2m-3)i,当实数m取什么值时,复数z是:
(1)零;(2)纯虚数;(3)z=2+5i;(4)表示复数z对应的点在第四象限.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.