先根据一元二次方程根的情况可判断f(2)一定是一个解,再假设f(x)的一解为A可得到x1+x2=4,同理可得到x3+x4=4,进而可得到x1+x2+x3+x4+x5=10,即可得到最后答案.
【解析】
对于f2(x)+bf(x)+c=0来说,f(x)最多只有2解,
又f(x)=(x≠2),当x不等于2时,x最多四解.
而题目要求5解,即可推断f(2)为一解!
假设f(x)的1解为A,得f(x)==A;
算出x1=2+A,x2=2-A,x1+x2=4;
同理:x3+x4=4;
所以:x1+x2+x3+x4+x5=4+4+2=10;
故选B.