满分5 > 高中数学试题 >

已知函数, (1)若x=1为f(x)的极值点,求a的值; (2)若y=f(x)的...

已知函数manfen5.com 满分网
(1)若x=1为f(x)的极值点,求a的值;
(2)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(3)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.
(1)先求导数,再根据x=1是f(x)的极值点得到:“f′(1)=0”,从而求得a值; (2)先根据切线方程为x+y-3=0利用导数的几何意义求出a值,再研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值与最小值. (3)由题意得:函数f(x)在区间(-1,1)不单调,所以函数f′(x)在(-1,1)上存在零点.再利用函数的零点的存在性定理得:f′(-1)f′(1)<0.由此不等式即可求得a的取值范围. 【解析】 (1)f′(x)=x2-2ax+a2-1 ∵x=1是f(x)的极值点, ∴f′(1)=0,即a2-2a=0,解得a=0或2;(3分) (2)∵(1,f(1))在x+y-3=0上.∴f(1)=2 ∵(1,2)在y=f(x)上,∴又f′(1)=-1, ∴1-2a+a2-1=-1∴a2-2a+1=0, 解得∴ 由f′(x)=0可知x=0和x=2是极值点. ∵ ∴f(x)在区间[-2,4]上的最大值为8.(8分) (3)因为函数f(x)在区间(-1,1)不单调, 所以函数f′(x)在(-1,1)上存在零点. 而f′(x)=0的两根为a-1,a+1,区间长为2, ∴在区间(-1,1)上不可能有2个零点. 所以f′(-1)f′(1)<0,∵a2>0, ∴(a+2)(a-2)<0,-2<a<2. 又∵a≠0,∴a∈(-2,0)∪(0,2).(12分)
复制答案
考点分析:
相关试题推荐
若抛物线C:y2=4x的焦点为F,过点K(1,0)的直线l与C相交于A、B两点,
(1)求抛物线的焦点坐标和准线方程
(2)当直线l的倾角为60°时,求AB的长.
查看答案
设四棱锥P-ABCD中,底面ABCD是边长为2的正方形,且PA⊥面ABCD,PA=AB,E为PD的中点.
(1)求证:直线PB∥面ACE
(2)求证:直线AE⊥面PCD
(3)求直线AC与平面PCD所成角的大小.

manfen5.com 满分网 查看答案
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
(Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
查看答案
某单位为了解职工的睡眠情况,从中抽取40名职工作为样本进行调查.调查的数据整理分组如下表示:
睡眠时间
(单位:小时)
[4,5)[5,6)[6,7)[7,8)[8,9)[9,10]
频 数26128
频 率0.20
(1)将以上表格补充完整,
(2)在给定的坐标系内画出样本的频率分布直方图;
(3)若按下面的方法在样本中从睡眠不足6小时的
职工中抽取一人:把睡眠不足6小时的8人从2到
9进行编号,先后两次抛掷一枚均匀的骰子,出现的
点数之和为被抽取人的序号.试求抽到5或8号的概率.

manfen5.com 满分网 查看答案
已知函数f(x)=4cosx(sinx+cosx)-a的最大值为2.
(1)求a的值及f(x)的最小正周期; (2)求f(x)在区间[0,π]上的单调递增区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.