满分5 > 高中数学试题 >

如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2...

如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=manfen5.com 满分网
(I)求证:AO⊥平面BCD;
(II)求异面直线AB与CD所成角的大小;
(III)求点E到平面ACD的距离.

manfen5.com 满分网
(I)欲证AO⊥平面BCD,根据直线与平面垂直的判定定理可知只需证AO与平面BCD内两相交直线垂直,而CO⊥BD,AO⊥OC,BD∩OC=O,满足定理; (II)以O为原点,OB为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,异面直线AB与CD的向量坐标,求出两向量的夹角即可; (III)求出平面ACD的法向量,点E到平面ACD的距离转化成向量EC在平面ACD法向量上的投影即可. 【解析】 (I)证明:连接OC ∵BO=DO,AB=AD, ∴AO⊥BD. ∵BO=DO,BC=CD, ∴CO⊥BD. 在△AOC中,由已知可得 而AC=2, ∴AO2+CO2=AC2, ∴∠AOC=90o,即AO⊥OC. ∵BD∩OC=O, ∴AO⊥平面BCD (II)【解析】 以O为原点,如图建立空间直角坐标系,则B(1,0,0),D(-1,0,0), ∴, ∴异面直线AB与CD所成角的大小为 (III)【解析】 设平面ACD的法向量为, 则 ∴ 令y=1,得是平面ACD的一个法向量. 又, ∴点E到平面ACD的距离
复制答案
考点分析:
相关试题推荐
如图,正四棱锥中P-ABCD,点E,F分别在棱PA,BC上,且AE=2PE,
(1)问点F在何处时,EF⊥AD?
(2)当EF⊥AD且正三角形PAB的边长为a时,求点F到平面PAB的距离;
(3)在第(2)条件下,求二面角C-PA-B的大小.

manfen5.com 满分网 查看答案
数列{an}中,a1=2,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.
(1)求c的值;
(2)求{an}的通项公式.
查看答案
已知函数f(x)=sin2x+2sinxcosx+3cos2x,x∈R,求:
(1)函数f(x)的最大值及取得最大值的自变量x的集合;
(2)函数f(x)的单调增区间.
查看答案
关于函数manfen5.com 满分网,有下列命题
①其最小正周期为manfen5.com 满分网
②其图象由y=2sin3x向右平移manfen5.com 满分网个单位而得到;
③其表达式写成manfen5.com 满分网
④在manfen5.com 满分网为单调递增函数;
则其中真命题为    查看答案
若O、F、B分别是椭圆的中心,焦点和短轴的端点,manfen5.com 满分网,则此椭圆的离心率e=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.