先由题设条件求出集合A,再由A∩B=B,导出集合B的可能结果,然后结合根的判别式确定实数a的取值范围.
【解析】
A={x|x2+4x=0}={0,-4},
由A∩B=B知,B⊆A,故B={0}或B={-4}或B={0,-4}或B=∅(2分)
若B={0}或B={-4}时,x2+2(a+1)x+a2-1=0仅有一根,必有△=[2(a+1)]2-4(a2-1)=8a+8=0,解得a=-1(4分)
由于a=-1,x2+2(a+1)x+a2-1=0即为x2=0,此方程的根是x=0,故当B={0}时存在a=-1符合条件,B={-4}不符合题意
若B={0,-4}时,由根与系数的关系得0-4=-2(a+1)解得a=1,(8分)
当B=∅时,△=[2(a+1)]2-4(a2-1)=8a+8<0,得a<-1,(11分)
综上:a=1,a≤-1.(12分)