满分5 > 高中数学试题 >

在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-a)cosB-b...

在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-a)cosB-bcosA=0.
(Ⅰ)若b=7,a+c=13求此三角形的面积;
(Ⅱ)求manfen5.com 满分网的取值范围.
利用正弦定理化简已知条件,根据三角形的内角和定理及诱导公式化简,由sinC不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可得到B的度数, (Ⅰ)根据余弦定理,由b,cosB和a+c的值,求出ac的值,然后利用三角形的面积公式,由ac的值和sinB的值即可求出三角形ABC的面积; (Ⅱ)由求出的B的度数,根据三角形的内角和定理得到A+C的度数,用A表示出C,代入已知的等式,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据A的范围求出这个角的范围,由正弦函数的值域即可得到所求式子的取值范围. 【解析】 由已知及正弦定理得:(2sinC-sinA)cosB-sinBcosA=0, 即2sinCcosB-sin(A+B)=0, 在△ABC中,由sin(A+B)=sinC 故sinC(2cosB-1)=0, ∵C∈(0,π),∴sinC≠0, ∴2cosB-1=0,所以B=60°(3分) (Ⅰ)由b2=a2+c2-2accos60°=(a+c)2-3ac, 即72=132-3ac,得ac=40(5分) 所以△ABC的面积;(6分) (Ⅱ)因为= =,(10分) 又A∈(0,),∴, 则.(12分)
复制答案
考点分析:
相关试题推荐
若对于定义在R上的函数f(x),其函数图象是连续不断,且存在常数λ(λ∈R),使得f(x+λ)+λf(x)=0对任意的实数x成立,则称f(x)是λ-伴随函数.有下列关于λ-伴随函数的结论:
①f(x)=0是常数函数中唯一一个λ-伴随函数;
②f(x)=x2是一个λ-伴随函数;
manfen5.com 满分网伴随函数至少有一个零点.
其中不正确    的结论的序号是    .(写出所有不正确结论的序号) 查看答案
已知数列{an}为等比数列,且a3•a7=2a5,设等差数列{bn}的前n项和为Sn,若b5=a5,则S9=    查看答案
manfen5.com 满分网展开式中常数项为    查看答案
定积分manfen5.com 满分网的值为    查看答案
函数f(a)=(3m-1)a+b-2m,当m∈[0,1]时,0≤f(a)≤1恒成立,则manfen5.com 满分网的最大值与最小值之和为( )
A.18
B.16
C.14
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.