满分5 > 高中数学试题 >

函数的值域 .

函数manfen5.com 满分网的值域   
本题考查指数型函数,首先做出指数的范围,是一个根式形式结果不小于0,根据底数小于1时,指数函数图象的变化趋势,得到要求指数型函数的值域,得到结果. 【解析】 先看函数的指数的取值范围, 令m=, 则根据幂函数m=知m∈[0,+∞) 根据指数型函数的性质, ∴在x=1时,y取到最大值1, 它的图象在指数大于0时,图象无限接近x轴,当永远不能和x轴相交, ∴y∈(0,1] 故答案为:(0,1]
复制答案
考点分析:
相关试题推荐
(1)选修4-2:矩阵与变换
已知矩阵manfen5.com 满分网,若矩阵A属于特征值6的一个特征向量为manfen5.com 满分网,属于特征值1的一个特征向量为manfen5.com 满分网,求矩阵A.
(2)选修4-4:坐标与参数方程
以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为psin(manfen5.com 满分网)=6,圆C的参数方程为manfen5.com 满分网,(θ为参数),求直线l被圆C截得的弦长.
(3)选修4-5:不等式选讲
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5试求a的最值.
查看答案
已知f(x)=lnx-ax2-bx(a≠0),
(1)若a=-1,函数f(x)在其定义域内是增函数,求b的取值范围.
(2)在(1)的结论下,设g(x)=e2x+bex,x∈[0,ln2],求函数g(x)的最小值;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*,求证:an≤2n-1.
查看答案
已知线段manfen5.com 满分网,CD的中点为O,动点A满足AC+AD=2a(a为正常数).
(1)求动点A所在的曲线方程;
(2)若存在点A,使AC⊥AD,试求a的取值范围;
(3)若a=2,动点B满足BC+BD=4,且AO⊥OB,试求△AOB面积的最大值和最小值.
查看答案
如图,在三棱柱ABC-中,已知CC1=BB1=2,BC=1,manfen5.com 满分网,AB⊥侧面BB1C1C,
(1)求直线C1B与底面ABC所成角正切值;
(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(3)在(2)的条件下,若manfen5.com 满分网,求二面角A-EB1-A1的大小.

manfen5.com 满分网 查看答案
一台仪器每启动一次都随机地出现一个5位的二进制数A=a1a2a3a4a5,其中A的各位数字中,a1=1,ak(k=2,3,4,5)出现0的概率为manfen5.com 满分网,出现1的概率为manfen5.com 满分网.记ξ=a1+a2+a3+a4+a5(例如:A=10101,即表示a1=a3=a5=1,a2=a4=0,而ξ=3),当仪器启动一次时,
(1)求ξ=3的概率;
(2)求ξ的概率分布列;
(3)若启动一次出现的数字为A=10101则称这次试验成功,求5次重复试验成功的次数的期望.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.