满分5 > 高中数学试题 >

设函数f(x)=kax-a-x(a>0且a≠1)是奇函数, (1)求k的值; (...

设函数f(x)=kax-a-x(a>0且a≠1)是奇函数,
(1)求k的值;
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若manfen5.com 满分网,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
(1)根据奇函数的性质知道f(0)=0,即可得答案. (2)由(1)可得f(x)的解析式,再根据f(x)的单调性求出不等式的解集. (3)由课求出a的值,进而求出函数g(x)的解析式.再根据g(x)在[1,+∞)上的最小值为-2,求出m的值 【解析】 (1)∵f(x)为奇函数, ∴f(0)=0,∴k-1=0, ∴k=1 (2)∵f(1)>0,∴,∴a>1, 又f'(x)=axlna+a-xlna=(ax+a-x)lna>0 ∴f(x)在R上单调递增, 原不等式可化为:f(x2+2x)>f(4-x), ∴x2+2x>4-x,即x2+3x-4>0, ∴x>1或x<-4, ∴不等式的解集为{x|x>1或x<-4} (3)∵,∴,即2a2-3a-2=0, ∴a=2或(舍去) ∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2 令t=f(x)=2x-2-x, ∵x≥1,∴, ∴g(x)=t2-2mt+2=(t-m)2+2-m2, 当时,当t=m时,g(x)min=2-m2=-2, ∴m=2, 当时,当时,,,舍去, ∴m=2.
复制答案
考点分析:
相关试题推荐
已知关于x的方程manfen5.com 满分网(m是与x无关的实数)的两个实根在区间[0,2]内,求m的取值范围.
查看答案
某品牌茶壶的原售价为80元/个,今有甲、乙两家茶具店销售这种茶壶,甲店用如下方法促销:如果只购买一个茶壶,其价格为78元/个;如果一次购买两个茶壶,其价格为76元/个;…,一次购买的茶壶数每增加一个,那么茶壶的价格减少2元/个,但茶壶的售价不得低于44元/个;乙店一律按原价的75%销售.现某茶社要购买这种茶壶x个,如果全部在甲店购买,则所需金额为y1元;如果全部在乙店购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)该茶社去哪家茶具店购买茶壶花费较少?
查看答案
已知函数f(x)=x2-2ax+5(a>1).
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.
查看答案
对于函数f(x),若存在x∈R,使f(x)=x成立,则称x为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
查看答案
设A={x|x2-8x+15=0},B={x|ax-1=0}.
(1)若manfen5.com 满分网,试判定集合A与B的关系;
(2)若B⊆A,求实数a组成的集合C.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.