(1)由二次函数f(x)=x2+bx+1(b∈R)和f(-1)=f(3),解出b.
(2)由函数解析式解出自变量x,再把自变量和函数交换位置,即可得到反函数的解析式,
然后注明反函数的定义域(即原函数的值域).
(3)问题转化为(m+1)>(m+1)(m-1) 在上恒成立,分类讨论,
当m>-1时,有 >m-1 在上恒成立,有 在此区间上的最小值大于m-1,
当m<-1时,有 <m-1 在上恒成立,有 在此区间上的最大值小于m-1,
当m=-1时,不满足条件.
【解析】
(1)∵二次函数f(x)=x2+bx+1(b∈R),满足f(-1)=f(3),
∴1-b+1=9+3b+1,∴b=-2.
(2)∵f(x)=x2-2x +1=(x-1)2,图象关于x=1对称,
∴当x>1时,x-1=,∴f(x)的反函数f-1(x)=+1 (x≥0).
(3)由题意知,+1>m(m-)在上恒成立,
即(m+1)>(m+1)(m-1) 在上恒成立,
①当m>-1时,有 >m-1 在上恒成立,
∴>m-1,即 m<,
∴-1<m<,
②当m<-1时,有 <m-1 在上恒成立,
∴<m-1,即 m>1+(舍去)
③m=-1时,不满足条件.
综上,实数m的取值范围是-1<m<.