(1)由nan+1=Sn+n(n+1)可得(n-1)an=Sn-1+n(n-1)(n≥2)
两式相减可整理可得,an+1=an+2(n≥2),由a1=2,可得a2=S1+2=4,a2-a1=2
故数列{an}是以2为首项,以2为公差的等差数列,由等差数列的通项公式可求
(2)由(1)可求,Sn=n(n+1),
由数列的单调性可知,bk≥bk+1,bk≥bk-1,从而可求数列{bn}的最大项,由bn≤t恒成立可得t≥bn的最大值,进而可求t的最小
【解析】
(1)∵nan+1=Sn+n(n+1)
∴(n-1)an=Sn-1+n(n-1)(n≥2)
两式相减可得,nan+1-(n-1)an=Sn-Sn-1+2n
即nan+1-(n-1)an=an+2n,(n≥2)
整理可得,an+1=an+2(n≥2)(*)
由a1=2,可得a2=S1+2=4,a2-a1=2适合(*)
故数列{an}是以2为首项,以2为公差的等差数列,由等差数列的通项公式可得,an=2+(n-1)×2=2n
(2)由(1)可得,Sn=n(n+1),
∴
由数列的单调性可知,bk≥bk+1,bk≥bk-1
解不等式可得2≤k≤3,k∈N*,k=2,或k=3,
b2=b3=为数列{bn}的最大项
由bn≤t恒成立可得,则t的最小值