满分5 > 高中数学试题 >

椭圆C的中心坐标为原点O,焦点在y轴上,焦点到相应准线的距离以及离心率均为,直线...

椭圆C的中心坐标为原点O,焦点在y轴上,焦点到相应准线的距离以及离心率均为manfen5.com 满分网,直线l与y轴交于点P(0,m),与椭圆C交于相异两点Amanfen5.com 满分网
(1)求椭圆方程;
(2)若manfen5.com 满分网的取值范围。.
(1)利用待定系数法求椭圆的方程,设出椭圆C的标准方程,依条件得出a,b的方程,求出a,b即得椭圆C的方程. (2)先设l与椭圆C交点为A(x1,y1),B(x2,y2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量条件即可求得m的取值范围,从而解决问题. 【解析】 (1)设椭圆C的方程:,则c2=a2-b2,, 故椭圆C的方程为y2+2x2=1.(4分) (2)由, ∴. ∵, ∴λ+1=4,λ=3. 设l与椭圆C交点为A(x1,y1),B(x2,y2), 得(k2+2)x2+2kmx+(m2-1)=0, 因此△=(2km)2-4(k2+2)(m2-1) =4(k2-2m2+2)>0,① 则x1+x2=. ∵,∴-x1=3x2,得 得3(x1+x2)2+4x1x2=0, ∴, 整理得:4k2m2+2m2-k2-2=0. 当时,上式不成立. ∴. 由①式得k2>2m2-2, ∵λ=3,∴k≠0,, 所以或. 即所求m的取值范围为(14分)
复制答案
考点分析:
相关试题推荐
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(Ⅰ)若当x=-1时函数y=g(x)取得极值,确定y=g(x)的单调区间
(Ⅱ)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围.
查看答案
在F(x)中,已知内角A、B、C所对的边分别为a、b、c,向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(I)求锐角B的大小;
(II)如果b=2,求F(x)的面积S△ABC的最大值.
查看答案
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225;等比数列{bn}满足:b3=a2+a3,b2b5=128
(1)求数列{an}和{bn}的通项公式
(2)记cn=an+bn求数列{cn}的前n项和为Tn
查看答案
设函数manfen5.com 满分网 x∈R
(1)求f(x)的最小正周期和值域;
(2)将函数y=f(x)的图象按向量manfen5.com 满分网平移后得到函数y=g(x)的图象,求函数y=g(x)的单调区间.
查看答案
已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,则下列命题中:
(1)方程f[f(x)]=x一定无实根;
(2)若a>0,则不等式f[f(x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x,使得f[f(x)]>x
(4)若a+b+c=0,则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号有    (写出所有真命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.