(I)由nan=Sn+2n(n-1)结合通项和前n项和的关系,转化为an+1-an=4(n≥2)再由等差数列的定义求解,要注意分类讨论.
(II)由(I)求得 an代入整理得 是一个等差数列与等比数列对应项积的形式,用错位相减法求其前n项和.
【解析】
(I)因为Sn=nan-2(n-1)n,
所以当n≥2时,Sn-1=(n-1)an-1-2(n-2)(n-1).an=Sn-Sn-1=nan-2(n-1)n-(n-1)an-1+2(n-2)(n-1),(2分)
即an-an-1=4(4分)
所以数列an是首项a1=1,公差d=4的等差数列,且an=1+(n-1)4=4n-3(n∈N*).(6分)
(II)因为,
所以.①(8分).②..(10分)
①-②得=.
所以(12分)