定义在D上的函数f(x),如果满足;对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•2
x+4
x,g(x)=
.
(1)当a=1时,求函数f(x)在(0,+∞)上的值域,并判断函数f(x)在(0,+∞)上是否为有界函数,请说明理由;
(2)若函数f(x)在(-∞,0]上是以3为上界的函数,求实数a的取值范围;
(3)若m>0,求函数g(x)在[0,1]上的上界T的取值范围.
考点分析:
相关试题推荐
定义在D上的函数f(x),如果满足;对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•2
x+4
x,g(x)=
.
(1)当a=1时,求函数f(x)在(0,+∞)上的值域,并判断函数f(x)在(0,+∞)上是否为有界函数,请说明理由;
(2)求函数g(x)在[0,1]上的上界T的取值范围;
(3)若函数f(x)在(-∞,0]上是以3为上界的函数,求实数a的取值范围.
查看答案
已知圆M:x
2+(y-2)
2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作圆M的切线PA,切点为A.
(1)若t=0,
,求直线PA的方程;
(2)经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t).
查看答案
已知圆M:x
2+(y-2)
2=1,定点A(4,2)在直线x-2y=0上,点P在线段OA上,过P点作圆M的切线PT,切点为T.
(1)若MP=
,求直线PT的方程;
(2)经过P,M,T三点的圆的圆心是D,求线段DO长的最小值L.
查看答案
如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点.求证:
(1)FD∥平面ABC;
(2)平面EAB⊥平面EDB.
查看答案
已知圆C:(x-1)
2+y
2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程; (写一般式)
(2) 当直线l的倾斜角为45°时,求弦AB的长.
查看答案