根据对函数的解析式进行变形后发现当x∈(-1,1],[3,5],[7,9]上时,f(x)的图象为半个椭圆.根据图象推断要使方程恰有5个实数解,则需直线y=与第二个椭圆相交,而与第三个椭圆不公共点.把直线分别代入椭圆方程,根据△可求得m的范围.
【解析】
∵当x∈(-1,1]时,将函数化为方程x2+=1(y≥0),
∴实质上为一个半椭圆,其图象如图所示,
同时在坐标系中作出当x∈(1,3]得图象,再根据周期性作出函数其它部分的图象,
由图易知直线 y=与第二个椭圆(x-4)2+=1(y≥0)相交,
而与第三个半椭圆(x-8)2+=1 (y≥0)无公共点时,方程恰有5个实数解,
将 y=代入(x-4)2+=1 (y≥0)得,(9m2+1)x2-72m2x+135m2=0,令t=9m2(t>0),
则(t+1)x2-8tx+15t=0,由△=(8t)2-4×15t (t+1)>0,得t>15,由9m2>15,且m>0得 m,
同样由 y=与第三个椭圆(x-8)2+=1 (y≥0)由△<0可计算得 m<,
综上可知m∈(,)
故答案为:(,)