(1)设x1<x2,化简计算f(x1)-f(x2)的解析式到因式乘积的形式,判断符号,得出结论.
(2))假设存在实数a使f(x)为奇函数,∴f(-x)=-f(x),由此等式解出a的值,若a无解,说明不存在实数a使f(x)为奇函数,若a有解,说明存在实数a使f(x)为奇函数.
【解析】
(1)∵f(x)的定义域为R,设x1<x2,
则=,(3分)
∵x1<x2,∴,(5分)
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),所以不论a为何实数f(x)总为增函数.(6分)
(2)假设存在实数a使f(x)为奇函数,∴f(-x)=-f(x)(7分)
即,(9分)
解得:a=1,故存在实数a使f(x)为奇函数. (12分)