满分5 > 高中数学试题 >

设函数,方程x=f(x)有唯一解,其中实数a为常数,,f(xn)=xn+1(n∈...

设函数manfen5.com 满分网,方程x=f(x)有唯一解,其中实数a为常数,manfen5.com 满分网,f(xn)=xn+1(n∈N*
(1)求f(x)的表达式;
(2)求x2011的值;
(3)若manfen5.com 满分网manfen5.com 满分网,求证:b1+b2+…+bn<n+1.
(1)由方程x=f(x)有唯一解,则ax2+(2a-1)x=0有唯一解,知 ,由此能求出f(x)的表达式; (2)由f(xn)=xn+1,知,由 等差数列的定义可求出数列{xn}的通项公式; (3)由 b1+b2+…+bn-n<1,由此能证明b1+b2+…+bn<n+1. 【解析】 (1)由,可化简为ax(x+2)=x∴ax2+(2a-1)x=0 ∴当且仅当时,方程x=f(x)有唯一解. 从而 (2)由已知f(xn)=xn+1(n∈N*),得 ∴,即 ∴数列是以为首项,为公差的等差数列.,∴ ∵, ∴,即 ∴ 故 (3)证明:∵, ∴∴ ∴ 故b1+b2+…+bn<n+1.
复制答案
考点分析:
相关试题推荐
设F(1,0),M点在x轴的负半轴上,点P在y轴上,且manfen5.com 满分网
(1)当点P在y轴上运动时,求点N的轨迹C的方程;
(2)若A(4,0),是否存在垂直x轴的直线l被以AN为直径的圆截得的弦长恒为定值?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案
某单位为解决职工的住房问题,计划征用一块土地盖一幢总建筑面积为A(m2)的宿舍楼.已知土地的征用费为2388元/m2,且每层的建筑面积相同,土地的征用面积为第一层的2.5倍.经工程技术人员核算,第一、二层的建筑费用都为445元/m2,以后每增高一层,其建筑费用就增加30元/m2.试设计这幢宿舍楼的楼高层数,使总费用最小,并求出其最小费用.(总费用为建筑费用和征地费用之和)
查看答案
已知函数manfen5.com 满分网,其中a,b为常数.
(1)当a=6,b=3时,求函数f(x)的单调递增区间;
(2)若任取a∈[0,4],b∈[0,3],求函数f(x)在R上是增函数的概率.
查看答案
在棱长为1的正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱AB,CC1,D1A1,BB1的中点.
(1)证明:FH∥平面A1EG;
(2)证明:AH⊥EG;
(3)求三棱锥A1-EFG的体积.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(1)求f(x)的最小正周期;
(2)若0≤x≤π,求f(x)的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.