满分5 > 高中数学试题 >

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=. 等边三角...

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=manfen5.com 满分网
等边三角形ADB以AB为轴运动.
(Ⅰ)当平面ADB⊥平面ABC时,求CD;
(Ⅱ)当△ADB转动时,是否总有AB⊥CD?证明你的结论.

manfen5.com 满分网
(Ⅰ)取出AB中点E,连接DE,CE,由等边三角形ADB可得出DE⊥AB,又平面ADB⊥平面ABC,故DE⊥平面ABC,在Rt△DEC中用勾股定理求出CD. (Ⅱ)总有AB⊥CD,当D∈面ABC内时,显然有AB⊥CD,当D在而ABC外时,可证得AB⊥平面CDE,定有AB⊥CD. 【解析】 (Ⅰ)取AB的中点E,连接DE,CE, 因为ADB是等边三角形,所以DE⊥AB. 当平面ADB⊥平面ABC时, 因为平面ADB∩平面ABC=AB, 所以DE⊥平面ABC, 可知DE⊥CE 由已知可得,在Rt△DEC中,. (Ⅱ)当△ADB以AB为轴转动时,总有AB⊥CD. 证明:(ⅰ)当D在平面ABC内时,因为AC=BC,AD=BD, 所以C,D都在线段AB的垂直平分线上,即AB⊥CD. (ⅱ)当D不在平面ABC内时,由(Ⅰ)知AB⊥DE.又因AC=BC,所以AB⊥CE. 又DE,CE为相交直线,所以AB⊥平面CDE,由CD⊂平面CDE,得AB⊥CD. 综上所述,总有AB⊥CD.
复制答案
考点分析:
相关试题推荐
圆0:x2+y2=8内有一点p(-1,2),AB为过点p且倾斜角为α的弦,
(1)当α=135°时,求AB的长;
(2)当弦AB被点p平分时,写出直线AB的方程.
查看答案
已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点轨迹方程.

manfen5.com 满分网 查看答案
已知圆C的圆心在直线l:x-2y-1=0上,并且经过A (2,1)、B(1,2)两点,求圆C的标准方程.
查看答案
设平面α∥β,两条异面直线AC和BD分别在平面α、β内,线段AB、CD中点分别为M、N,设MN=a,线段AC=BD=2a,求异面直线AC和BD所成的角.

manfen5.com 满分网 查看答案
已知二面角α-l-β的平面角为45°,有两条异面直线a,b分别垂直于平面,则异面直线所成角的大小是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.