满分5 > 高中数学试题 >

设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数...

设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}(n∈N+)是等差数列,数列{bn-2}(n∈N+)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使manfen5.com 满分网,若存在,求出k,若不存在,说明理由.
(1)先求出等差数列的公差,再利用an+1-an=(a2-a1)+(n-1)×1=n-3,表示出an=a1+(a2-a1)+(a3-a1)+…+(an-an-1)即可求出数列{an}的通项公式; 同样先求出等比数列的公比,再利用即可求{bn}的通项公式; (2)先求出f(k)=ak-bk的表达式,并找到其单调区间的分界点,求出其函数值的范围即可得出结论. 【解析】 (1)由已知a2-a1=-2,a3-a2=-1 得公差d=-1-(-2)=1 所以an+1-an=(a2-a1)+(n-1)×1=n-3 故an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=6+(-2)+(-1)+0+…+(n-4) = = 由已知b1-2=4,b2-2=2所以公比 所以. 故 (2)设f(k)=ak-bk= = 所以当k≥4时,f(k)是增函数. 又,所以当k≥4时, 而f(1)=f(2)=f(3)=0,所以不存在k,使.
复制答案
考点分析:
相关试题推荐
求与x轴切于点(5,0)并在y轴上截取弦长为10的圆的方程.
查看答案
对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);②f=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④manfen5.com 满分网
当f(x)=2-x时,上述结论中正确结论的序号是    写出全部正确结论的序号) 查看答案
平面内有3点A(0,-3),B(3,3),C(x,-1),且manfen5.com 满分网,则x的值是    查看答案
在△ABC中,若manfen5.com 满分网,∠C=150°,BC=1,则AB的值为    查看答案
在平面直角坐标系中,不等式组manfen5.com 满分网 所表示的平面区域的面积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.