满分5 > 高中数学试题 >

如图(1),△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中...

如图(1),△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).
(1)求证:EF⊥A′C;
(2)求三棱锥F-A′BC的体积.

manfen5.com 满分网
(1)欲证EF⊥A'C,可先证EF⊥平面A'EC,根据直线与平面垂直的判定定理可知只需证EF⊥平面A'EC内两相交直线垂直,而EF⊥A'E,EF⊥EC,EC∩A‘E=E,满足定理条件; (2)先根据题意求出S△FBC,将求三棱锥F-A′BC的体积转化成求三棱锥A′-BCF的体积,再根据三棱锥的体积公式求解即可. 【解析】 (1)证明:在△ABC中,EF是等腰直角△ABC的中位线,∴EF⊥AC(2分) 在四棱锥A'-BCEF中,EF⊥A'E,EF⊥EC,(4分) 又EC∩A‘E=E∴EF⊥平面A'EC,(5分) 又A'C⊂平面A'EC,∴EF⊥A'C(6分) (2)在直角梯形EFBC中,EC=2,BC=4, ∴ 又∵A'O垂直平分EC,∴ ∴V=S△FBC•A′O==
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)=ax2+bx+c,不等式f(x)>-2x的解集为(1,3).
(Ⅰ)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(Ⅱ)若f(x)的最大值为正数,求实数a的取值范围.
查看答案
已知数列{an}中,a1=3,an+1-2 an=0,数列{bn}中,bn•an=(-1)n(n∈N*).
(Ⅰ)求数列{an}通项公式;
(Ⅱ)求数列{bn}通项公式以及前n项的和.
查看答案
在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知manfen5.com 满分网
(1)若△ABC的面积等于manfen5.com 满分网,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
查看答案
如下图4,⊙O′和⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=   
manfen5.com 满分网 查看答案
曲线manfen5.com 满分网(θ为参数)上的点到两坐标轴的距离之和的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.